138334-74-4; 2y·HCl, 138353-24-9; 3v, 60326-45-6; 4 (X = 4-Et), 138334-75-5; 4 (X = 4-OMe), 7443-25-6; 5 (X = 4'-OMe, Y = 7-Cl), 138334-76-6; 5 (X = 3'-OMe, Y = 7-Cl), 138334-77-7; 5 (X = 2'-OMe, Y = 7-Cl), 138334-78-8; 5 (X = 4'-OMe, Y = H), 129151-87-7; 5 (X = 4'-OMe, Y = 6-Cl), 138334-79-9; 5 (X = 4'-OMe, Y = 6-Me), 138334-80-2; 5 (X = 4'-OMe, Y = 6-CF₃), 138334-81-3; 5 (X = 4'-OMe, Y = 6-CN), 138334-82-4; 5 (X = 4'-OMe, Y = 6-NO₂), 138334-83-5; 5 (X = 4'-OMe, Y = 6-OMe), 138334-84-6; 5 (X = 4'-OMe, Y = 6-CO₂Et), 138334-85-7; 5 (X = 4'-OMe, Y = 7-OBn), 138334-86-8; 5 (X = 4'-OMe, Y = 7-St-Bu), 138352-85-9; 5 (X = 4'-OMe, Y = 7-OCF₂H), 138334-87-9; 5 (X = 4'-OMe, Y = 7-SPh), 138334-88-0; 5 (\bar{X} = 4'-OMe, Y = 7-OPh), 138334-89-1; 5 (X = 4'-OMe, Y = 7-CF₃), 138334-90-4; 5 (X = 4'-OMe, Y = 6-OMe, 7-Br), 138334-91-5; 5 (X = 4'-SMe, $Y = 6-CF_3$, 138384-04-0; 5 (X = 4'-Et, Y = 6-CF₃), 138384-05-1; $5 (X = 3', 4'-(OMe)_2, Y = 6-CF_3), 138334-92-6; 6g, 138383-10-5;$ 6v, 138334-93-7; 7(X = 4'-OMe, Y = 7-SHgSPh, R = OH), 138334-94-8; 7a, 138334-95-9; 7b, 138334-96-0; 7c, 138334-97-1; 7d, 129151-91-3; 7e, 128574-37-8; 7f, 138334-98-2; 7g, 133963-42-5; 7h, 138334-99-3; 7i, 138335-00-9; 7j, 138335-01-0; 7k, 138335-02-1; 70, 138335-03-2; 7s, 138335-04-3; 7t, 138335-05-4; 7u free base, 128510-87-2; 7v, 138335-06-5; 7w, 138335-07-6; 7x, 138335-08-7; 7y, 138335-09-8; 8x, 138335-10-1; 9v, 138335-11-2; 10d, 138352-86-0; 11a, 128510-83-8; 11c, 138335-12-3; 11d, 138335-13-4; 11e, 138335-14-5; 11g, 138335-15-6; cis-11h, 111605-16-4; trans-11h, 138383-11-6; cis-11i, 138335-16-7; trans-11i, 138335-17-8; cis-11k, 119217-65-1; trans-11k, 138383-12-7; 11n, 138335-18-9; 11o, 138335-19-0; 11p, 138335-20-3; 11q, 129151-99-1; 11r, 119217-62-8; 12a free base, 138335-21-4; 12a-fumarate, 138335-22-5; 12b free base, 138335-23-6; 12b-2HCl, 138335-24-7; 12c free base, 138335-25-8; 12c-HCl, 138335-26-9; 12d free base, 138335-27-0; 12d·HCl, 138335-28-1; 12e free base, 138335-29-2; 12e·HCl, 138335-30-5; 12f free base, 138335-31-6; 12f·HCl, 138335-32-7; 12g free base, 138353-25-0; 12g·HCl, 138335-33-8; 12h free base, 119217-15-1; 12h·HCl, 119217-31-1; 12i free base, 119217-13-9; 12i·HCl, 119217-30-0; 12j free base, 119217-14-0; 12j·HCl, 119217-29-7; 12k free base, 138383-13-8; 12k-fumarate, 138456-

70-9; 121 free base, 138335-34-9; 121·HCl, 138335-35-0; 12m free base, 138335-36-1; 12m·HCl, 138335-37-2; 12n free base, 138335-38-3; 12n·HCl, 138335-39-4; 12o free base, 138335-40-7; 120·HCl, 138335-41-8; 12p free base, 138335-42-9; 12p·HCl, 138335-43-0; 12q free base, 119217-37-7; 12q·HCl, 119217-36-6; 12r free base, 119217-39-9; 12r-HCl, 119217-38-8; 12s free base, 138335-44-1; 12s·HCl, 119217-40-2; cis-14, 138335-45-2; trans-14, 138335-46-3; 15a free base, 132201-65-1; 15a·HCl, 129524-09-0; 15b free base, 138335-47-4; 15b fumarate, 138383-14-9; 15c free base, 138335-48-5; 15c-fumarate, 138383-15-0; 15d free base, 138335-49-6; 15e free base, 138335-50-9; 15f free base, 138335-51-0; 15f-HCl, 138383-16-1; 15g free base, 138335-52-1; 15h free base, 138335-53-2; 15h·HCl, 138383-17-2; 15i free base, 138335-54-3; 15i·HCl, 138383-18-3; 15j free base, 138335-55-4; 15j·HCl, 138383-19-4; 15k free base, 138335-56-5; 15l free base, 128573-80-8; 151·HCl, 128509-61-5; 15m free base, 128573-81-9; 15m·HCl, 128656-27-9; 15n free base, 128573-82-0; 15n·HCl, 128509-64-8; 15n (R" = CH(Me)CN) free base, 128510-18-9; 15n (R" = CH-(Me)CH₂NH₂) free base, 138383-20-7; 150 free base, 138383-21-8; 150·HCl, 128573-83-1; 150 (R'' = CH(Me)CN) free base, 128574-18-5; $150 (R'' = CH(Me)CH_2NH_2)$ free base, 138383-22-9; 15p free base, 138335-57-6; 15p·HCl, 138335-58-7; 15q free base, 138335-59-8; 15q·HCl, 138335-60-1; 15r free base, 119217-19-5; 15r·HCl, 119217-35-5; 15s free base, 138335-61-2; 15s fumarate, 138335-62-3; 15t free base, 138335-63-4; 15t·HCl, 138335-64-5; 15u free base, 138335-65-6; 15u·HCl, 138383-23-0; 15u·oxalate, 138383-24-1; Me₂N(CH₂)₂Cl, 107-99-3; MeCH(NMe₂)CH₂Cl. 53309-35-6; thiophenol, 108-98-5; 2-nitro-5-chlorotoluene, 5367-28-2; [1-(4-methoxyphenyl)-2-[2-amino-5-(phenylthio)phenyl]ethyl]propanedioic acid, dimethyl ester, 138335-66-7; 1,3,4,5tetrahydro-7-(phenylthio)-3-hydroxy-3-(methoxycarbonyl)-4-(4methoxyphenyl)-2H-1-benzazepin-2-one, 138335-67-8; 2-nitro-6-(trifluoromethyl)toluene, 6656-49-1; [1-methyl-1-(4-ethylphenyl)-2-[2-nitro-6-(trifluoromethyl)phenyl]ethyl]propanedioic acid, dimethyl ester, 138335-68-9; [1-methyl-1-(4-ethylphenyl)-2-[2-amino-6-(trifluoromethyl)phenyl]ethyl]propanedioic acid, dimethyl ester, 138353-26-1.

Communications to the Editor

Inhibitors of Sterol Synthesis. $3\beta,25$ -Dihydroxy- 5α -cholest-8(14)-en-15-one, an Active Metabolite of 3β -Hydroxy- 5α -cholest-8(14)-en-15-one

Oxygenated sterols are potent regulators of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in mammalian cells. 15-Oxygenated sterols are particularly active in the regulation of HMG-CoA reductase activity and of cholesterol biosynthesis. 1-7 One 15-

Kandutsch, A. A.; Chen, H. W.; Heiniger, H.-J. Biological activity of some oxygenated sterols. Science 1978, 201, 498-501.

oxygenated sterol, 3β -hydroxy- 5α -cholest-8(14)-en-15-one (1), is highly active in lowering not only the levels of HMG-CoA reductase activity in cultured mammalian cells but also that of two other key enzymes involved in the formation of mevalonic acid, i.e., cytosolic acetoacetyl-CoA thiolase and HMG-CoA synthase. In addition to its inhibitory action on cholesterol biosynthesis, 1 has been shown to be a potent inhibitor of cholesterol absorption in intact rats. The 15-ketosterol serves as a substrate

⁽²⁾ Schroepfer, G. J., Jr. Sterol biosynthesis. Annu. Rev. Biochem. 1981, 50, 585-621.

⁽³⁾ Schroepfer, G. J., Jr.; Parish, E. J.; Chen, H. W.; Kandutsch, A. A. Inhibition of sterol biosynthesis in L cells and mouse liver cells by 15-oxygenated sterols. J. Biol. Chem. 1977, 252, 8975-8980.

⁽⁴⁾ Pinkerton, F. D.; Izumi, A.; Anderson, C. M.; Miller, L. R.; Kisic, A.; Schroepfer, G. J., Jr. 14α-Ethyl-5α-cholest-7-ene-3β,15α-diol, a potent inhibitor of sterol biosynthesis, has two sites of action in cultured mammalian cells. J. Biol. Chem. 1982, 257, 1929-1936.

⁽⁵⁾ Pajewski, T. N.; Pinkerton, F. D.; Miller, L. R.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Studies of the metabolism of 5α-cholest-8(14)-en-3β-ol-15-one in Chinese hamster ovary cells and its effects on activities of early enzymes in cholesterol biosynthesis. Chem. Phys. Lipids 1988, 48, 153-168.

⁽⁶⁾ Taylor, F. R.; Saucier, S. E.; Shown, E. P.; Parish, E. J.; Kandutsch, A. A. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J. Biol. Chem. 1984, 259, 12382-12387.

⁽⁷⁾ Wilson, W. K.; Wheeler, M. E.; St. Pyrek, J.; Pinkerton, F. D.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Characterization of β,γ-unsaturated analogs of 3β-hydroxy-5α-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. J. Lipid Res. 1991, 32, 1215-1227.

⁽⁸⁾ Schroepfer, G. J., Jr.; Christophe, A.; Needleman, D. H.; Kisic, A.; Sherrill, B. C. Inhibitors of sterol synthesis. Dietary administration of 5α-cholest-8(14)-en-3β-ol-15-one inhibits the intestinal absorption of cholesterol in lymph-cannulated rats. Biochem. Biophys. Res. Commun. 1987, 146, 1003-1008.

for acyl coenzyme A:cholesterol acyltransferase (ACAT) and inhibits the oleoyl-CoA-dependent esterification of cholesterol in hepatic and jejunal microsomes. 10 Oral administration of 1 to rats has been shown to cause a reduction of ACAT activity of jejunal microsomes. 11 The 15-ketosterol has been shown to lower serum cholesterol levels upon oral administration to animals. 12-14

Delineation of the metabolism of 1 is critical to an understanding of its actions. 1 is convertible to cholesterol upon incubation with rat liver subcellular preparations^{15,16} and upon oral or intravenous administration to rats and baboons, ^{9,17-20} and a pathway for the overall conversion of 1 to cholesterol has been presented. ¹⁶ Cholesterol and its esters have been shown to be the major metabolites of 1 found in tissues and blood after its intravenous administration to bile duct-cannulated rats. ¹⁷ However, a quan-

- (9) Brabson, J. S.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. The effects of dietary 5α-cholest-8(14)-en-3β-ol-15-one on the fate of [4-14C]cholesterol and [2,4-3H]5α-cholest-8-(14)-en-3β-ol-15-one after intragastric administration to rats. Chem. Phys. Lipids 1988, 47, 1-20.
- (10) Miller, L. R.; Needleman, D. H.; Brabson, J. S.; Wang, K.-S.; Schroepfer, G. J., Jr. 5α-Cholest-8(14)-en-3β-ol-15-one. A competitive substrate for acyl coenzyme A:cholesterol acyl transferase. Biochem. Biophys. Res. Commun. 1987, 148, 934-940.
- (11) Needleman, D. H.; Strong, K.; Stemke, K. A.; Brabson, J. S.; Kisic, A.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Effect of dietary 5α-cholest-8(14)-en-3β-ol-15-one on ACAT activity of jejunal microsomes of the rat. Biochem. Biophys. Res. Commun. 1987, 148, 920-925.
- (12) Schroepfer, G. J., Jr.; Monger, D.; Taylor, A. S.; Chamberlain, J. S.; Parish, E. J.; Kisic, A.; Kandutsch, A. A. Inhibitors of sterol synthesis. Hypocholesterolemic action of dietary 5α-cholest-8(14)-en-3β-ol-15-one in rats and mice. Biochem. Biophys. Res. Commun. 1977, 78, 1227-1233.
- (13) Schroepfer, G. J., Jr.; Parish, E. J.; Kisic, A.; Jackson, E. M.; Farley, C. M.; Mott, G. E. 5α-Cholest-8(14)-en-3β-ol-15-one, a potent inhibitor of sterol biosynthesis, lowers serum cholesterol and alters the distribution of cholesterol in lipoproteins in baboons. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 3042-3046.
- (14) Schroepfer, G. J., Jr.; Sherrill, B. C.; Wang, K.-S.; Wilson, W. K.; Kisic, A.; Clarkson, T. B. 5α-Cholest-8(14)-en-3β-ol-15-one lowers serum cholesterol and induces profound changes in the levels of lipoprotein cholesterol and apoproteins in monkeys fed a diet of moderate cholesterol content. *Proc. Nat. Acad. Sci. U.S.A.* 1984, 81, 6861-6865.
- (15) Monger, D. J.; Parish, E. J.; Schroepfer, G. J., Jr. 15-Oxygenated sterols. Enzymatic conversion of [2,4-3H]5α-Cholest-8(14)-en-3β-ol-15-one to cholesterol in rat liver homogenate preparations. J. Biol. Chem. 1980, 255, 11122-11129.
- (16) Monger, D. J.; Schroepfer, G. J., Jr. Inhibitors of cholesterol biosynthesis. Further studies of the metabolism of 5αcholest-8(14)-en-3β-ol-15-one in rat liver preparations. Chem. Phys. Lipids 1988, 47, 21-46.
- (17) Schroepfer, G. J., Jr.; Chu, A. J.; Needleman, D. H.; Izumi, A.; Nguyen, P. T.; Wang, K.-S.; Little, J. M.; Sherrill, B. C.; Kisic, A. Inhibitors of sterol synthesis. Metabolism of 5α-cholest-8-(14)-en-3β-ol-15-one after intravenous administration to bile duct-cannulated rats. J. Biol. Chem. 1988, 263, 4110-4123.
- (18) Schroepfer, G. J., Jr.; Kisic, A.; Izumi, A.; Wang, K.-S.; Carey, K. D.; Chu, A. J. Inhibitors of sterol synthesis. Metabolism of [2,4-3H]5α-cholest-8(14)-en-3β-ol-15-one after intravenous administration to a nonhuman primate. J. Biol. Chem. 1988, 263, 4098-4109.
- (19) Schroepfer, G. J., Jr.; Christophe, A.; Chu, A. J.; Izumi, A.; Kisic, A.; Sherrill, B. C. Inhibitors of sterol synthesis. A major role of chylomicrons in the metabolism of 5α-cholest-8(14)-en-3β-ol-15-one in the rat. Chem. Phys. Lipids 1988, 48, 29-58.
- (20) Pajewski, T. N.; Brabson, J. S.; Kisic, A.; Wang, K.-S.; Hylarides, M. D.; Jackson, E. M.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Metabolism of [2,4-3H]5α-cholest-8(14)-en-3β-ol-15-one after oral administration to a nonhuman primate. Chem. Phys. Lipids 1989, 49, 243-263.

Figure 1. Conversion of 3β -acetoxy- 5α -cholest-8(14)-en-15-one to 3β ,25-dihydroxy- 5α -cholest-8(14)-en-15-one: (a) (CF₃CO)₂O, H₂O₂, H₂SO₄; triethylamine, CH₃OH (ref 28); (b) periodinane; (c) isopropyltriphenylphosphonium iodide, butyllithium; (d) Hg(O-Ac)₂; NaBH₄; (e) K₂CO₃; CH₃OH.

Table I. Effects of 3β ,25-Dihydroxy- 5α -cholest-8(14)-en-15-one (2) and 3β -Hydroxy- 5α -cholest-8(14)-en-15-one (1) on the Levels of HMG-CoA Reductase Activity in CHO-K1 Cells

sterol concentration, μΜ	HMG-CoA reductase activity (% of control activity) ^a	
	2	1
0.0	100.0 ± 2.0^{b}	$100.0 \pm 1.4^{\circ}$
0.1	63.4 ± 0.2	61.9 ± 1.2
0.25	33.5 ± 1.0	52.1 ± 1.3
0.5	32.2 ± 0.9	42.2 ± 2.0
1.0	34.2 ± 2.8	35.8 ± 0.6
2.5	21.5 ± 1.2	24.4 ± 0.8

^a Variation is expressed as SD of triplicate assays for the experimental values. ^{b,c} Mean values for controls were 1265 and 854 pmol min⁻¹ mg⁻¹ protein, respectively.

titatively more important fate of 1 under these conditions is very rapid conversion to polar metabolites which are excreted in bile $^{17.19}$ and of which a significant fraction undergoes enterohepatic circulation. 17 In initial studies of the nature of the polar metabolites of 1, we have shown that hydroxylation at C-26 and C-25 occurs upon its incubation with rat liver mitochondria in the presence of NADPH. 21 (25R)-3\$\beta,26-Dihydroxy-5\$\alpha\$-cholest-8(14)-en-15-one, prepared by chemical synthesis, was shown to be highly active in lowering the levels of HMG-CoA reductase activity in CHO-K1 cells. 22

The purposes of the present study were to synthesize 3β ,25-dihydroxy- 5α -cholest-8(14)-en-15-one (2) and to evaluate its action on HMG-CoA reductase activity in cultured mammalian cells.

(21) St. Pyrek, J.; Vermilion, J. L.; Stephens, T. W.; Wilson, W. K.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Characterization of side chain oxygenated derivatives formed upon incubation of 3β-hydroxy-5α-cholest-8(14)-en-15-one with rat liver mitochondria. J. Biol. Chem. 1989, 264, 4536-4543.

(22) Kim, H.-S.; Wilson, W. K.; Needleman, D. H.; Pinkerton, F. D.; Wilson, D. K.; Quiocho, F. A.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. Chemical synthesis, structure, and biological activities of (25R)-3β,26-dihydroxy-5α-cholest-8-(14)-en-15-one, a metabolite of 3β-hydroxy-5α-cholest-8(14)-en-15-one. J. Lipid Res. 1989, 30, 247-261.

The development of an efficient chemical synthesis of 2 presents a significant challenge. The realization of this goal requires the construction of two functional domains, i.e., the $\Delta^{8(14)}$ -15-ketone system and the 25-hydroxy-substituted sterol side chain. Two approaches can be considered: (a) introduction of the $\Delta^{8(14)}$ -15-ketone functionality into a 25-hydroxysterol such as 25-hydroxycholesterol, and (b) introduction of the 25-hydroxyl group into a $\Delta^{8(14)}$ -15-ketosterol. The former approach, for which analogy can be found in our previous synthesis of (25R)-3 β ,26-dihydroxy-5 α -cholest-8(14)-en-15-one from (25R)-26-hydroxycholesterol, 22 would be limited by the need to prepare significant amounts of 25-hydroxycholesterol and the multiple steps required for its conversion to 2. The latter approach, direct hydroxylation of 1, represents a case of specific oxidation at an unactivated carbon atom of the sterol side chain, a continuing challenge in synthetic organic chemistry. Several approaches²³⁻²⁷ for direct hydroxylation at C-25 have been described but these were not pursued because of reported low yields and/or unsuitability to the case of a $\Delta^{8(14)}$ -15-ketosterol. Our current effort concentrated on exploitation of our recent demonstration of a specific, very high yield side-chain oxidation of 1,28 for which an efficient synthesis has been described.29 Oxidation of the acetate of 1 with a mixture of trifluoroacetic anhydride, hydrogen peroxide, and sulfuric acid, followed by treatment of the crude product with triethylamine and methanol, provided 3β-acetoxy-24hydroxy- 5α -chol-8(14)-en-15-one (3) in 61% yield.²⁸

The availability of 3, selectively protected at C-3, provided a key intermediate for the chemical synthesis of 2. Oxidation of the 24-hydroxyl function of 3 with Dess-Martin reagent³⁰ gave the aldehyde 4³¹ in 91% yield.

(23) Barton, D. H. R.; Boivin, J.; Lalandis, P. Functionalisation of saturated hydrocarbons. Part 13. Further studies on the Gif oxidation of cholestane derivatives. J. Chem. Soc., Perkin Trans. 1 1989, 463-468.

(24) Orito, K.; Satoh, S.; Suginome, H. A long-range intramolecular functionalization by alkoxyl radicals: a long-range intramolecular hydroxylation of C(25) of cholestane side chain. J. Chem. Soc., Chem. Commun. 1989, 1829-1831.

- (25) Groves, J. T.; Neumann, R. Enzymic regioselectivity in the hydroxylation of cholesterol catalyzed by a membrane-spanning metalloporphyrin. J. Org. Chem. 1988, 53, 3891-3893.
- (26) Rotman, A.; Mazur, Y. C-25 hydroxylation of cholesterol derivatives. J. Chem. Soc., Chem. Commun. 1974, 15.
- (27) Cohen, Z.; Mazur, Y. Dry ozonation of steroids. C-25 functionalization of cholestane derivatives. J. Org. Chem. 1979, 44, 2318-2320.
- (28) Herz, J. E.; Swaminathan, S.; Wilson, W. K.; Schroepfer, G. J., Jr. Inhibitors of sterol synthesis. An efficient and specific side chain oxidation of 3β-hydroxy-5α-cholest-8(14)-en-15-one. Facile access to its metabolites and analogs. Tetrahedron Lett. 1991, 32, 3923-3926.
- (29) Wilson, W. K.; Wang, K.-S.; Kisic, A.; Schroepfer, G. J., Jr. Concerning the chemical synthesis of 3β-hydroxy-5α-cholest-8(14)-en-15-one, a novel regulator of cholesterol metabolism. Chem. Phys. Lipids 1988, 48, 7-17.
- (30) Dess, D. B.; Martin, J. C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 1983, 48, 4155-4156.
- (31) Oxidation of 3 (565 mg; 1.36 mmol) in CH₂Cl₂ (10 mL) with periodinane³⁰ (1.26 g; 2.99 mmol) for 3 h at 25 °C gave, after silica gel column chromatography (solvent, 10% ethyl acetate in hexane), 3β-acetoxy-15-oxo-5α-chol-8(14)-en-24-al (4) in 91% yield: mp 162-164 °C; IR (KBr) 1723, 1697, 1628 cm⁻¹; MS 414 (37%; M⁺) calcd for C₂₈H₃₈O₄ 414.2770, found 414.2757; ¹³C NMR δ 73.0 (C-3), 40.6 (C-23), 202.2 (C-24); single component on TLC (solvent, 40% ethyl acetate in hexane).

Wittig olefination of 4 with isopropyltriphenyl-phosphonium iodide gave the desired Δ^{24} analogue 5^{32} of the acetate of 1. Oxymercuration, following the procedure of Morisaki et al.,³³ proceeded in high yield to give the 25-hydroxy derivative 6^{34} despite the presence of the $\Delta^{8(14)}$ -15-ketone functionality. Mild alkaline hydrolysis³⁵ of 6 gave the desired 3β ,25-dihydroxy- 5α -cholest-8(14)-en-15-one (2).³⁶ The overall yield of 2 from the acetate of 1 was 36%.

The 3\$\beta\$,25-dihydroxy-15-ketosterol 2 was highly active in lowering the levels of HMG-CoA reductase activity in CHO-K1 cells (Table I).\(^{37}\) It should be noted that 1, 26-hydroxycholesterol, and 25-hydroxycholesterol are among the most potent of oxysterols in the lowering of HMG-CoA reductase activity in cultured mammalian cells.\(^6\) The results presented herein, coupled with those described previously,\(^{22}\) demonstrate that hydroxylation of 1 at C-26 or C-25 leads to metabolites of very high activity, findings which indicate the importance of these metabolites in considerations of the overall actions of 1 in intact animals or in cells in which they are formed.

Acknowledgment. This work was supported in part by the American Cyanamid Company and the Ralph and Dorothy Looney Endowment Fund. Spectral studies were supported in part by the Robert A. Welch Foundation (Grant C-583).

- (32) 3β-Acetoxy-5α-cholesta-8(14),24-dien-15-one (5) was prepared in 71% yield by condensation of 4 (502 mg; 1.21 mmol) with the ylide prepared from isopropyltriphenylphosphonium iodide (839 mg; 1.99 mmol) and butyllithium (1.27 mmol) in THF at -78 °C for 15 min followed by stirring at 0 °C for 2 h and silica gel column chromatography (solvent, 4% ethyl acetate in hexane): mp 129-130 °C; IR (KBr) 1738, 1699, 1624 cm⁻¹; MS 440 (32%; M*) calcd for C₂₉H₄₄O₃ 440.3291, found 440.3275; ¹³C NMR δ 24.4 (C-23), 124.5 (C-24), 131.4 (C-25), 25.6 (C-26), 17.6 (C-27); single component on TLC (solvent, 40% ethyl acetate in hexane).
- (33) Morisaki, M.; Rubio-Lightbourn, J.; Ikekawa, N. Synthesis of active forms of vitamin D. I. A facile synthesis of 25hydroxycholesterol. Chem. Pharm. Bull. 1973, 21, 457-458.
- (34) Mercuric acetate (147 mg; 0.461 mmol) in a 1:1 mixture (0.6 mL) of THF and water was added to 5 (131 mg; 0.297 mmol) in THF (0.6 mL). After stirring at 0 °C for 4 h and then at 25 °C for 5 h, the mixture was treated with NaBH₄ (550 mg) in 3 N NaOH for 5 min, and, after standard workup, subjected to silica gel column chromatography (solvent, 16% ethyl acetate in hexane) to give 3β-acetoxy-25-hydroxy-5α-cholest-8-(14)-en-15-one (6) in 87% yield: mp 151.0-152.5 °C; IR (KBr) 1736, 1701, 1626 cm⁻¹; MS 458 (51%; M) calcd for C₂₉H₄₆O₄ 458.3396, found 458.3393; ¹³C NMR δ 73.1 (C-3), 44.2 (C-24), 70.8 (C-25); single component on TLC (solvent, 50% ethyl acetate in hexane).
- (35) K₂CO₃ (20 mg) in methanol (2 mL); 4 h at 25 °C.
- (36) 2: mp 177-179 °C; IR (KBr) 1701, 1683, 1622, 1607 cm⁻¹; MS 416 (64%; M⁺) calcd for C₂₇H₄₄O₃ 416.3291, found 416.3303; ¹³C NMR δ 70.8 (C-3), 37.7 (C-4), 31.1 (C-2), 71.0 (C-25); single component on TLC (solvents, 70% ethyl acetate in hexane and 40% acetone in benzene).
- (37) The effects of 1 and 2 on the elevated levels of HMG-CoA reductase activity induced by transfer of the cells to lipid-deficient media were assayed as described previously.⁷

Shankar Swaminathan, Frederick D. Pinkerton George J. Schroepfer, Jr.*

Departments of Biochemistry and Cell Biology and of Chemistry Rice University P.O. Box 1892 Houston, Texas 77251 Received December 4, 1991